HOMEBLOGINQUIRYSEARCH

Facebook

ðŸ’Ą Did you know cancer was first documented over 2,000 years ago?Despite centuries of research, we still know little about this complex disease. From how cancer cells "go to sleep" to the role of our immune system in tumor growth, these mysteries shape the future of oncology.🔎 Here are 10 fascinating cancer facts that shed light on what we know—and what we don’t.📖 Read more: zurl.co/5z3Kn #CancerAwareness #Oncology #ScienceMatters ... See MoreSee Less
⚠ïļ Are you missing out on one of the most essential minerals for your health?Magnesium is a powerhouse nutrient, supporting:✅ Energy production ⚡✅ Muscle & nerve function 💊✅ Heart & bone health âĪïļðŸĶī✅ Blood sugar & blood pressure regulationYet 80% of people are deficient—leading to migraines, fatigue, & even heart disease. ðŸ˜ĻðŸ’Ą The good news? You can boost your Mg levels through food, supplements, & even topical absorption.📖 Discover how magnesium can transform your health → zurl.co/pEGk7 #Magnesium #HealthBenefits #Wellness ... See MoreSee Less

Twitter

CLL Cancer: What You Need to Know ðŸĐļ
Chronic Lymphocytic Leukemia (CLL) is a slow-progressing blood cancer that affects the immune system.

Learn more about CLL symptoms, diagnosis, and treatment options here 👇
🔗

#CLL #Leukemia #CancerAwareness

🧎 Cancer is more than one disease—over 100 different types.
From Hippocrates's discovery to modern genetic research, science has come a long way, but many mysteries remain.

🔎 Learn fascinating cancer facts.

📖 Read more:

#Cancer #Oncology #HealthFacts

🔎 Are You Getting Enough #Magnesium?
It plays a crucial role in muscle function, energy production & heart health, yet 80% of people are deficient!

⚠ïļ Deficiency is linked to migraines, fatigue, & heart disease.

📖 Read more →

#Health #Wellness

🧐 What’s the Biggest Cause of Cancer?
Not just genetics—lifestyle, environment, and viruses play a role. Understanding these risks is key to prevention.

🔗 Read more about the hidden culprits behind cancer:

#CancerAwareness #HealthMatters

🚀 Can microgravity help fight cancer?
Scientists aboard the International Space Station study how cancer cells behave in weightlessness.

🔎 Discover the science behind microgravity cancer research:

#CancerResearch #SpaceScience #Microgravity

Load More

Cancer Tumor Angiogenesis and Blood Vessels

April 20, 2021
Est. Reading: 3 minutes

Cancer Tumor Angiogenesis and Blood Vessels

Tumors arise from a small population of cancer stem cells (CSCs) or tumor-instating cells. Cancer cells can rapidly reshape, destroy, or integrate into existing blood vessels. Tumor angiogenesis and blood vessels create a blood supply to the cancer tumor, also causing the spread, or metastasize, to new tissues through the blood.

Tumors produce protein factors that stimulate the formation of blood vessels to provide them with the food and oxygen they need. The process of blood vessel formation is called tumor angiogenesis. This is not to be confused with angiogenesis, the growth of blood vessels from the existing vasculature, which is part of the healing process.

Cancer Tumor, Tumor Angiogenesis, Blood, Blood Vessels

A piece of an existing tumor would take over an adjacent blood vessel wall, putting cancer cells in direct contact with the circulation, and cancer cells could do so in a matter of hours. They didn’t have to invade past the blood vessels; they became the blood vessels and could release cancer cells into the blood flow.

Tumor vessels are more permeable than normal blood vessels. Their immature nature means they are poorly constructed with smooth muscle cells and may have a discontinuous endothelial cell lining with an abnormal basement membrane that makes them weak and vulnerable to the leaking of cancer stem cells.

Without a blood supply, tumor cells cannot spread or metastasize to new tissues. Tumor cells can cross through the walls of the capillary blood vessel at a rate of about one million cells per day. However, not all cells in a tumor are angiogenic. Angiogenic and nonangiogenic cells in cancer cross into blood vessels and spread; however, nonangiogenic cells give rise to dormant tumors when they grow in other locations. In contrast, the angiogenic cells quickly establish themselves in new places by developing and producing new blood vessels, resulting in the rapid growth of the tumor.

Trying to determine how groups of cells migrate to other parts of the body, the scientists used tissue engineering to construct a functional 3D blood vessel and grew breast cancer cells nearby. They observed the cancer cells reaching the blood vessel and taking over a patch of the cell wall. As a result of this attachment to the blood vessel, a cluster of tumor cells was quickly released into the bloodstream to travel to distant sites. Cancer cells also could constrict blood vessels, causing them to leak or pull on them.

Tumors with Slow or No Blood Flow

To ensure this result wasn't an artifact of the surgical procedure (e.g., trauma from the surgery), the researchers directly visualized the tumors through the thin skin of three patients and examined their tumor blood flow. They found, again, that approximately 50 percent of the blood vessels had no blood flow.

That’s a clinically significant finding, explained Dr. Skitzki, because “whether we’re talking about chemotherapy or immunotherapy, half of the inlets to the tumors are closed, so the therapies can’t get to different parts of the tumor.” High-Magnification Microscopy Visualizes Tumor Blood Vessels in Real-Time

An increasing body of evidence, initially from histopathological studies and subsequently from animal models and clinical trials, has uncovered an added layer of complexity: the possibility that some primary and metastatic tumors can develop and progress without angiogenesis by exploiting the pre-existing vasculature.

Blood vessels and cancer much more than just angiogenesis

Cancer Tumor Angiogenisis and Blood Vessels

The Role of Hypoxia

Hypoxia is a common feature of solid tumors. It develops because of the rapid growth of the cancer that outstrips the oxygen supply and impaired blood flow due to the formation of abnormal blood vessels supplying the tumor. Reports indicate that tumor hypoxia can activate angiogenesis, enhancing invasiveness and the risk of metastasis, boosting cancer survival, and suppressing anti-tumor immunity while impeding the therapeutic response. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment.

Cancer Tumor, Tumor Angiogenesis, Blood, Blood Vessels

The CC Formula can help the immune system target and kill only those mutated cells, leaving the healthy normal cells surrounding them functioning without disruption. Click here to learn more about this revolutionary formula.

Sharing is caring
Copyright © 2025 All Rights Reserved
To be up to date with the current development and practical information to help you, feel free to
SUBSCRIBE TO OUR NEWSLETTER
Visit our blog for additional information.
BLOG
Copyright © 2025 All Rights Reserved
cross